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Employing a time-dependent Ginzburg-Landau model, we investigate the phase ordering kinetics of nematic
liquid crystals confined in a narrow pore. We consider various orientations of the surface field and compute
domain growth laws and scaling functions. In the absence of any anchoring field we find that~and in contrast
to a confined binary liquid mixture! mere confinement of the liquid crystals is insufficient to produce slow
growth of the nematic domains owing to the vector nature of the order parameter. In the presence of a strong
homogeneous anchoring, the system quickly reaches a nematic state. On the other hand, for homeotropic
anchoring, the liquid crystal takes on anXY character and the growth law exponent crosses over from1

2 to
1
4 as the field strength is increased.@S1063-651X~96!10105-7#

PACS number~s!: 64.70.Md, 64.60.2i, 47.55.Mh, 68.45.Gd

I. INTRODUCTION

Nematic liquid crystals, like 5CB~where CB denotes cy-
ano biphenyl!, are strongly distorted by anchoring conditions
at a confining surface@1–3#. These equilibrium configura-
tions reflect the competition between surface anchoring and
bulk elasticity@4#. Such equilibrium studies in simple geom-
etries have provided a complete picture of the nature of de-
fects induced by the anchoring. The complexity of the situ-
ation increases considerably when the confining medium has
a disordered geometric structure. More recent work@5–10#
has been directed to address the effect of randomly con-
straining media~such as porous glasses like Vycor, or silica
gels! on both statics and dynamics of the nematic-isotropic
phase transition. Results from various experiments indicate
that the random preferential orientation of the liquid crystals
along the pore surface~whose normal changes direction ran-
domly over a persistence length! profoundly influences the
dynamics of the isotropic to nematic phase transition and
fluctuations of the orientational order parameter relax at a
much slower rate than in bulk liquid crystals. These experi-
mental findings have stimulated intense theoretical work
@11,12#, leading to the proposal that this glassy relaxation of
nematic liquid crystals could be understood by studying the
kinetics of a spin model in the presence of a quenched ran-
dom field.

In contrast to the studies carried out with silica gels as the

confining medium@5#, experimental results of ordering of
nematic liquid crystals in Vycor glass show that the random-
field model ~with Gaussian randomness! is clearly inappli-
cable@6#. These studies reveal that the nematic ordering in
different cavities of the Vycor glass is only weakly corre-
lated. One could therefore model a porous system as a net-
work of independent pores joined by weak links~junctions!
@6#. Indeed, such a ‘‘single-pore’’ model for the nematic liq-
uid crystals seems to explain the static measurements reason-
ably well. Similar models have been proposed by Liuet al.
@13# to explain the metastability and the slow kinetics of
domain growth seen in experiments on binary liquid mix-
tures confined in a low-porosity medium. In fact,single-pore
modelswithout any randomness have been used as model
systems@13–16# to understand various effects observed in
experiments of binary liquid mixtures in Vycor glasses
@17,18#. Such simulations@14–16# have shown that the ki-
netics of domain growth slows down radically when the av-
erage domain size and the pore radius become comparable.
However, there has been no such study of the kinetics of
phase ordering of nematic liquid crystals confined within a
single pore.

As a first step towards understanding the kinetics of ne
matic ordering in a porous medium following a quench from
the isotropic phase, we consider the ordering process in a
simple confining geometry~parallelopiped pore!, subject to a
variety of anchoring conditions at the boundaries of the pore.
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Our work draws inspiration from similar studies, carried out
in the context of phase separation of binary fluids in porous
media, which reveal that the slow dynamics seen in low-
porosity media~such as Vycor glass! originates from the
geometrical confinementof the binary fluid mixture inside
the pores. Carrying out a detailed numerical study of the
appropriate time-dependent Ginzburg-Landau model, we
show that the ordering process of nematic liquid crystals is
dramatically different from binary liquid mixtures confined
in a pore.

II. MODEL AND NUMERICAL PROCEDURE

Nematic liquid crystals can be described by a vector di-
rector fieldfW (r ,t) with the constraint that local inversions,

fW (r ,t)→2fW (r ,t), do not change the configuration. We
model the nematics by a rigid rotor Hamiltonian@19–21#

H52J(
~ i , j !

~fŴ i•fŴ j !
2, ~1!

wherefŴ i is the unit director field on a three-dimensional
cubic lattice. As required, this Hamiltonian is invariant under

local spin inversionfŴ i→2fŴ i , and further, under separate
discrete spatial rotations and internal O~3! rotations. The
model shares the global symmetries of the standard Franck
elastic Hamiltonian@1# when the moduli for splay, bend, and
twist are equal~equal constants approximation!. One thus
expects that the qualitative features of the dynamics of the
two models are similar@20#. The equations of motion for the
director field are given by the nonconserved, time-dependent
Ginzburg-Landau equation@22#. For numerical expediency,
we replace the ‘‘hard constraint’’ of unit magnitude with a
‘‘soft constraint,’’ by including the a ( i$21/2fW i•fW i

11/4(fW i•fW i)
2% in the Hamiltonian. With this term, the equa-

tions of motion for a zero-temperature quench read~we set
J51! @20#

]fW i

]t
52

dH

dfW i

5fW i2ufW i u2fW i1 (
jPnn of i

~fŴ i•fŴ j !fW j . ~2!

The initial conditions on the director are such that the
components offW i(t50) are independent random variables
between20.1 and 0.1. Physical quantities are averaged over
50 realizations offW i(t50). We solve the discretized form of
Eq. ~2!, with a time stepdt50.01, up to a timetmax5500.

III. RESULTS

It is well known that at late times, vector spin models ind
dimensions having O(n) symmetry@23# enter a scaling re-
gime, where the correlation function
g(r ,t)[^fW (rW,t)•fW (0,t)& obeys the scaling relationg(r ,t)
5g„r /R(t)…. This implies the existence of a single dominant
length scaleR(t), related to the ‘‘domain size,’’ which
grows asR(t);t1/z ~z is the dynamical exponent!. It has
been shown@23# that the asymptotic structure factor@Fourier
transform ofg(r ,t)# S(k,t);rdefk

2(d1n) at largek, where
rdef is the defect density. This generalized Porod’s law@24#
is related to the type of stable localized defect allowed by the

theory @23#. Unlike the Heisenberg spin, which is an O~3!
vector, the director fieldf of nematic liquid crystals belongs
to the projective planeP2[O~3!/Z2, which is not homotopi-
cally equivalent to O~3!. This gives rise to6 1

2 line @O~2!#
defects, in addition to the usual point@O~3!# defects@2,3#.

In our simulations, we first started with a study ofbulk
dynamics~on a 803 system! following a quench from the
high-temperature isotropic phase to theT50 nematically or-
dered phase. In the absence of any symmetry breaking field,
the continuous infinity of ground states will compete with
each other to establish equilibrium. These degenerate ground
states are separated by the stable topological point and line
defects. Away from these defects, the order parameter satu-
rates to its bulk value in the scaling regime. Subsequent evo-
lution occurs with the monotonic decay of these defects.
Since the bulk dynamics of this system has already been
studied by Blundell and Bray@20# by a cell-dynamics simu-
lation method@25#, we will just briefly mention our results
for the simulation of a Langevin model for the bulk kinetics.

The natural order parameter describing the nematic con-
figuration is the traceless second-rank tensor,
cab(rW,t)5^fa(rW,t)fb(rW,t)2„fW (rW,t)•fW (rW,t)…& ~where a
andb run from 1 to 3!. This is invariant under local inver-
sion of f(rW,t). We compute the equal-time pair correlation
function defined as

g~r ;t ![ 1
2 ^3„fŴ ~0;t !•fŴ ~r ;t !…221&. ~3!

Note that in our definition of the correlation function, the
spins are hardened to giveg(0;t)51. This makes the size of
the defect corejcore microscopic, which gives better scaling
even at early times@20#. The domain sizeRg(t) is extracted
from the correlation function in the following way:

g~r5Rg ;t !5g~0;t !/2.

At late times, the domain size grows asRg(t);t1/z with
1/z50.4560.02. The correlation function at these late times
shows good scalingg(r ,t)5g„r /Rg(t)…. The structure factor
S(k,t) decays ask25 for large k. This is consistent with
scattering from6 1

2 line defects~corresponding ton52, d53
in the expression for the generalized Porod’s law@23#!. We
take this as concrete evidence that the late-time dynamics is
controlled by these6 1

2 line defects. Our results are in general
agreement with those of Blundell and Bray@20#; however,
we note that these authors have obtained an exponent of
25.3 from their structure factor data. It seems, then, that one
needs to run to a much longer time than probed by Blundell
and Bray to obtain the asymptotic scaling exponent of25.

Next we introduce the liquid crystal in its isotropic phase
into a parallelopiped pore with dimensionsLx@Ly5Lz ,
wherex̂ is along the pore axis~in our simulations,Lx5256
andLy54 or 8!. We study the evolution of the nematic phase
following a quench toT50. We consider periodic boundary
conditions atx56Lz/2 and open boundary conditions at
y56Lz/2, andz56Lz/2. Surface anchoring fields are in-
corporated by adding a term2( iPS (hW i•fW i)

2 term in the
Hamiltonian~where the sum is restricted to sites on the sur-
face iPS !. We distinguish between two kinds of anchoring:
~1! homogeneous anchoring, where the surface field
hW 5(h,0,0) points along thex̂ direction and~2! homeotropic
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anchoring, where the surface field points in a direction nor-
mal to the local tangent plane at the surface@26#. We com-
pute the pair correlation function, averaged over theŷ and ẑ
directions, as

g~Dx;t ![ 1
2 ^3„fŴ ~x,y,z;t !•fŴ ~x1Dx,y,z;t !…221&. ~4!

The domain size in thex̂ directionRg(t) is computed from
the correlation function as described before.

Zero anchoring: The Langevin dynamics following a
quench from the isotropic phase toT50 leads to algebraic
growth of the domain sizeRg(t);t1/z with 1/z50.4360.03,
which is similar to the bulk value~Fig. 1!. The correlation
function shows good scalingg(Dx,t)5g„Dx/Rg(t)…[g(s)
~Fig. 2!. It seems then that the ground state possesses long-
ranged orientational order. These features should be con-
trasted with the dynamics of binary fluids in a pore, where
complete phase separation is preempted by the formation of
long-lived ‘‘microplugs’’ of one of the phases, as soon as the
domain size is comparable to the pore size@13–16#, which

alters the growth fromR;t1/3 to R;lnt. Thus mere confine-
ment is insufficient to produce slow growth of the nematic
domains.

Why does a nematic liquid crystal behave differently from
a binary liquid mixture in a single pore? The answer to this
question involves the symmetry of the order parameter,
which is a vector quantity for the liquid crystals, in contrast
to the binary fluid case where the order parameter is a scalar
quantity. As soon as the domain sizeRg(t) gets larger than
the pore size, the dynamics of the director field is one dimen-
sional. There can exist no stable topological defects, since
the dimension of the order parametern is larger than the
spatial dimensiond. We check this by performing a simula-
tion of the model described by Eqs.~1! and ~2! in one di-
mension on a system of sizeL51024. We find that the
growth exponent is given by 0.4760.03 and the correlation
function obeys dynamical scaling. This scaling function in
one dimension is plotted in Fig. 3, along with the scaling
function for the pore. As can be seen, these two scaling func-
tions compare quite well over a large range of rescaled dis-
tances. This indicates that the defects present initially in the
confining space of the pore disappear at late times by escap-

FIG. 4. Plot of ln$2ln[g(s)] % vs ln(s) for the scaling function
of the one-dimensional model and for the pore geometry with zero
anchoring. Here,s5r /Rg(t) and the straight line is the best fit to
the data with a slope of 260.05.

FIG. 1. Log-log plot of domain sizeRg(t) vs time for zero
anchoring field. The straight line fit yields an exponent of 0.43
60.03, which is similar to the bulk value of 0.4560.02 ~see text!.

FIG. 2. Scaling function for the pair correlation function along
the long direction of the pore~x̂! for the zero anchoring case.
Clearly dynamical scaling holds.

FIG. 3. Comparison of the scaled pair correlation functions for
the one-dimensional model~see text! with the corresponding scal-
ing function for the pore geometry.
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ing to the pore boundary. Theoretical studies in both con-
served and nonconserved O(n) models@23,27# suggest that
the generalized Porod’s law breaks down for cases with
n.d. Equivalently, the scaled~real-space! correlation func-
tion would have a different functional form at small dis-
tances than that found in three dimensions. Indeed, our re-
sults indicate that this is true. We find that, for small rescaled
distances, the scaled correlation function can be better de-
scribed by an exp~2as2! form ~see Fig. 4! instead of the
12bs2 lns1••• form found in three-dimensional systems
@20# @the latter leads to the Porod tail,S(k);k25#. A similar
exponential form for the correlation function has been ob-
served for the O(n) model in the absence of topological
defects (n.d) @23,27#.

Homogeneous anchoring: A symmetry breaking surface
field in the x̂ direction establishes a unique ground state,
where the director points alongx̂ at every site. After a
quench from the isotropic phase, the growth behavior de-
pends on the strength of the anchoring field. The influence of
the surface field can be parametrized by a dimensionless ra-
tio m of the pore width and theextrapolation length l[J/h2.
If m[Ly/ l@1 ~strong anchoring!, the nematic director at the
surface points along the easy axis provided by the field. For
weak anchoring, m!1, the energetics is ‘‘elasticity domi-

nated,’’ but form.1, effectively the field dictates the growth
that is reflected in the very fast saturation of the correlation
function. We compute the ‘‘connected part’’ of the correla-
tion function defined as

gconn~Dx;t ![
g~Dx;t !2g~`;t !

12g~`;t !
~5!

and extract a length scaleRg(t) from this quantity as before.
In Fig. 5 we show a log-log plot ofRg(t) versust for various
strengths of the homogeneous anchoring. For weak anchor-
ing, Rg(t) grows diffusively as in the bulk,Rg;t1/2. For
larger anchoring strengths, after an initial bulk diffusive be-
havior for a very short period of time, the domain size satu-
rates quickly.

Homeotropic anchoring: As before, we compute the av-
erage domain sizeRg(t) from the connected part of the cor-
relation function. A log-log plot ofRg(t) versust is shown
in Fig. 6 for Ly5Ls54. We find that the growth law expo-
nent crosses over from a value of12 to a value of14 as the
strength of the surface field is increased. Snapshots for the
liquid crystal conformations help us understand the situation.
For the field values considered in our simulation, we find that
at late times, all the nematics in a givenyz plane prefer to
point along a common director. A simple calculation of the
energetics in theyz plane reveals that this is due to the
domination of the exchange contribution to the energy over
the field energy for the field values considered here. After the
quench then, the system chooses a particular direction for the
director ~at everyyz plane! and therefore the configuration
along the long axis is a twist along thex̂ axis. Our simulation
results show that the coarsening occurs through an unwind-
ing of this twisted configuration. An escape to the long axis
is not favorable due to the large cost in field energy. More-
over, since the fields act only in they or z direction, thex
component off(rW) is found to much smaller than they and
z components. Thus, in effect, the system behaves like a
two-component~n52! nematic in one dimension. Simula-
tions and analytic theories of the dynamics of a noncon-
served,XY model in one dimension have shown that the
growth law exponent in this case is14 @23,28#. One expects
that two-component ‘‘nematics’’ in one dimension would
also yield the same growth law exponent. Indeed, our direct
simulations of a Lebwohl-Lasher model with two-component
nematics in one dimension show that this is true. Thus, in the
presence of a homeotropic anchoring, the growth kinetics of
liquid crystals in a narrow pore is identical to that of a two-
component liquid crystal in one dimension.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have carried out a numerical study of
growth kinetics of nematic liquid crystals confined in a nar-
row pore. We have considered various orientations of surface
fields and computed the domain growth law and the scaling
functions. In the absence of any anchoring field we find that,
in contrast to a binary liquid mixture confined in a narrow
pore, mere confinement of the liquid crystals is insufficient
to produce slow growth of the nematic domains due to the
vector nature of the order parameter. The system in this case
behaves as an one-dimensional system and shows dynamical

FIG. 5. Log-log plot of domain sizeRg(t) ~along the long di-
rection of the pore! vs time t for various strengths of the homoge-
neous anchoring field.

FIG. 6. Log-log plot of domain sizeRg(t) ~along the long di-
rection of the pore! vs time t for various strengths of the homeo-
tropic anchoring fields. The straight lines are the best fit to the data.
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scaling. In the presence of a strong homogeneous anchoring,
the system quickly reaches a nematic state. On the other
hand, for homeotropic anchoring, the liquid crystals take a
two-component character and the growth law exponent
crosses over from12 to

1
4 as the field strength is increased.

Although our results are obtained in a simple pore geom-
etry, we believe that they are relevant for growth of nematic
domains in a low-porosity medium such as Vycor glass. This
is consistent with recent static measurements in Vycor glass,
which have been explained in terms of a suitable distribution
of single, independent pores that mimic the confining me-
dium. It would be interesting to study the effect of pore
junctions, variation in pore radius, and other nontrivial geo-
metrical features, on the growth kinetics of such orientation-
ally ordered systems.
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